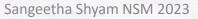
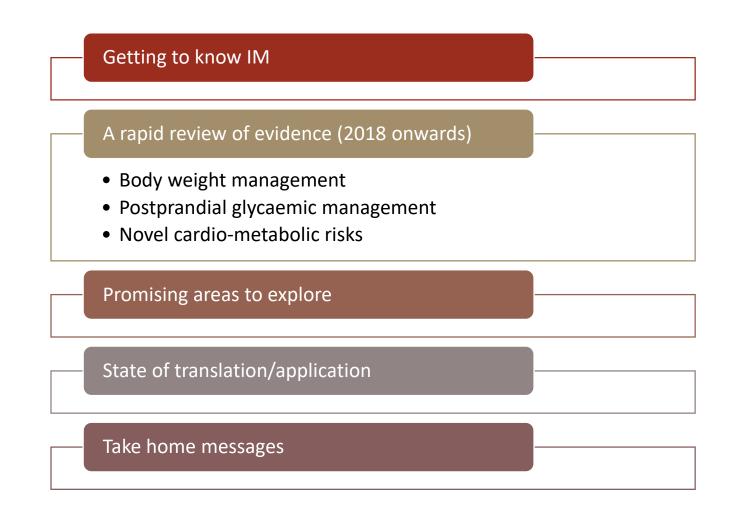
Scientific update on metabolic improvement aspects with Palatinose[™] (isomaltulose)


Sangeetha Shyam

Rovira i Virgili University Department of Biochemistry and Biotechnology Food, Nutrition, Development and Mental Health Group (ANUT-DSM),Human Nutrition Unit.

Reus, Spain.


Disclosures

- Received isomaltulose from BENEO Gmbh. for my research projects conducted while at IMU.
- Received no funding from BENEO Gmbh. for this presentation
- The funders had no role in review search strategy, data extraction and collation.

Presentation outline

IM: Isomaltulose PP: Postprandial PPG: PP glycaemia INS: Insulin

The rush for sugar alternatives

Sugar (sucrose) plays an indispensable role in diet

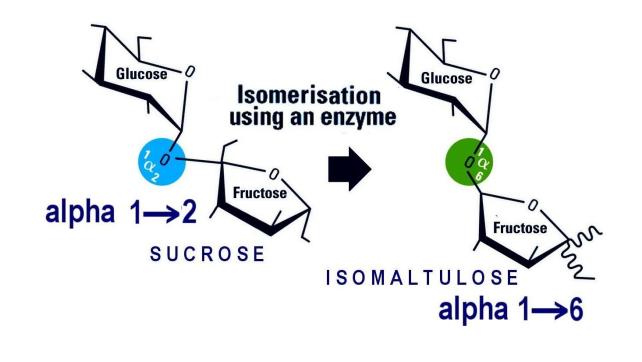
Excessive sucrose intake causes PPG surge \rightarrow NCD

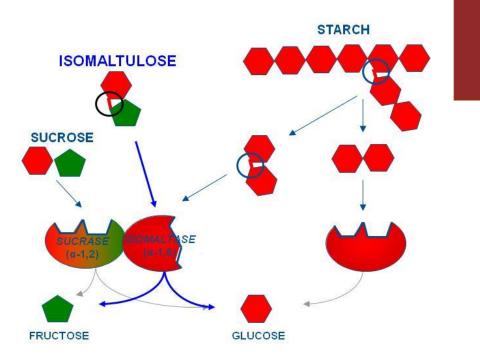
Therefore, there is an urgent need for possible alternatives to sucrose

Uncertainty of non-nutritive sweeteners

IM is a promising alternative to sucrose due to its suitable sweetness, potential physiological benefits, and feasible production processes

Tian Y et al. Applied microbiology and biotechnology. 2019;103(21-22):8677-87. Lohner et al. Nutr J. 2017 Dec;16(1):1-21.


IM – A biochemist's delight

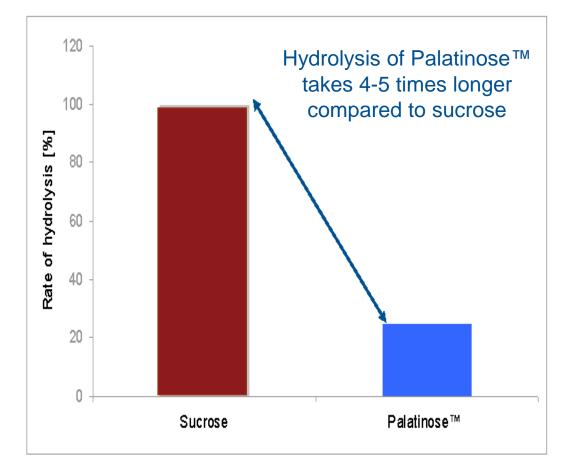


- o Interesting disaccharide
- Like sucrose, composed of glucose and fructose
- But bonded differently
- A natural sweet constituent of honey

- Brand name: Palatinose™
- (6-0-α-D-glucopyranosyl-D-fructofuranose)
- CAS Reg. No. 13718-94-0
- Total molecular formula: C₁₂H₂₂O₁₁ x H₂O
- Molecular weight: 360.32

Meet the BOND

Scheme of hydrolysis of sucrose, starch & Palatinose[™] in the small intestine


Isomaltulose is hydrolysed at the same enzyme complex involved in the digestion of sucrose and starch^{*}

It is digested at the isomaltase site.

* The amylopectin derived glucose-glucose 1-6 linkage

IM Digestion in small intestine

RGILI

Rate of hydrolysis – sucrose vs. Palatinose™ from *in vitro* enzyme kinetic studies

Palatinose[™] (IM) is slowly released

- Is a "slow-release" carbohydrate
 - Supplies glucose /energy at a slower pace and over a longer period of time vs. sucrose
- Is completely digested

For the Nutritionist: What is Isomaltulose?

Journal of Functional Foods 48 (2018) 173-178

Contents lists available at ScienceDirect

Journal of Functional Foods

journal homepage: www.elsevier.com/locate/jff

Check for

Dr Chang Sui Kiat

AP Dr Amutha Ramadas

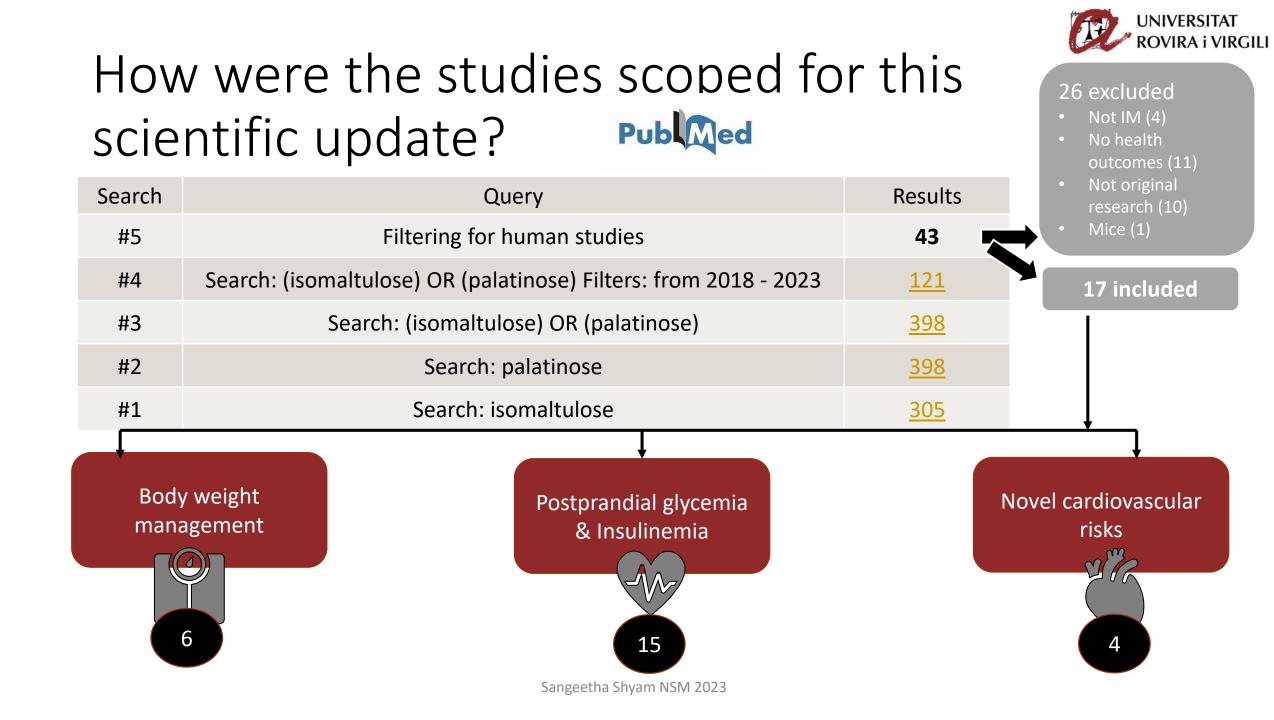
Isomaltulose: Recent evidence for health benefits

Sangeetha Shyam^a, Amutha Ramadas^b, Sui Kiat Chang^{a,*}

^a Department of Nutrition and Dietetics, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia

^b Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ARTICLE INFO


Keywords: Isomaltulose Sweetener Gut microbiota Prebiotic Postprandial glycaemia Glycaemic control

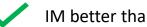
ABSTRACT

Isomaltulose (IM) is a naturally occurring disaccharide composed of alpha-1,6-linked glucose and fructose monomers. IM is gaining interest as an alternative sweetener to sucrose primarily because of its low glycaemic index (GI) properties. Low GI has been implicated in the prevention and management of chronic diseases such as cardio-metabolic diseases and cancers. The low glycaemic potential of IM has fuelled the many recent in-vitro, animal and human studies including randomised-controlled trials and cohorts. This review discusses the chemical and physiological properties of IM in relation to its potential health effects, with a focus on its prebiotic properties. Research health findings from existing literature published within the last 10 years were compiled and summarised. The novel applications of products formulated with IM in improving health, cognition and

Time for an update? \rightarrow Rapid update

Bibliometric analysis

Search results validated using Research Rabbit


Isomaltulose & Body Weight Management

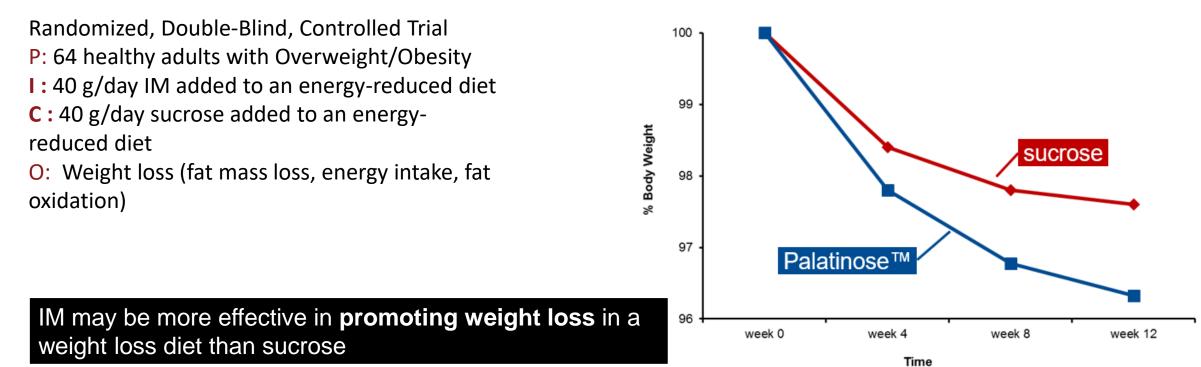
Body weight management

Reference	Country	Study design	Participants	Control	Body weight	Fat Oxidation	Energy Intake	Appetite
Notbohm et al (2021)	Germany	Randomised DB Cross- Over	21 male runners	Maltodextrin and glucose				
Kendall et al (2018)	New Zealand	Randomised DB Cross- Over	77 healthy adults	Sucrose				
Lightowler et al (2019)	UK	12 week RCT	64 healthy overweight/obese adults	Sucrose				
Mateo-Gallego et al (2020)	Spain	10 week RCT (crossover)	41 T2DM with overweight/obesity	Maltose			trend	
Deng et al (2021)	New Zealand	Randomised Cross-Over	55 healthy adults	Sucrose				
Dávila et al (2019)	Venezuela	Randomised DB Cross- Over	23 T2DM sver 50 years old	ONS std				

Both RCTS showed beneficial effects

IM better than control

 $\langle \cdots \rangle$ No sig effect



Control better than IM

IM and body weight- 12 weeks study

Mean body weight adjusted for baseline

Lightowler et al . Nutrients. 2019 Oct 4;11(10):2367.

IM and satiety10 weeks study

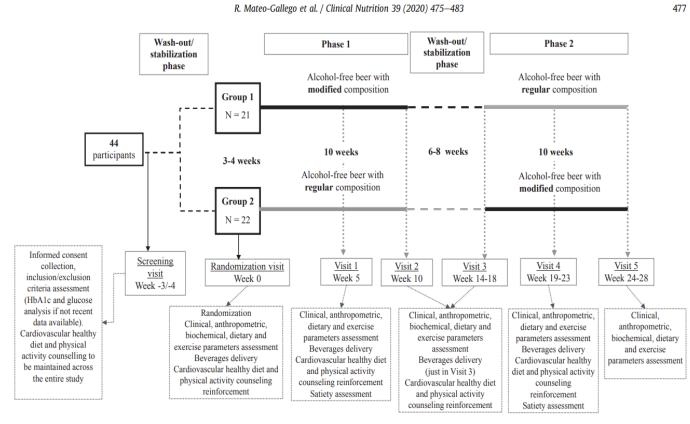


Fig. 1. Study design description.

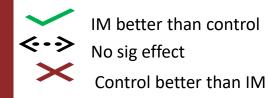
Mateo-Gallego et al. Clinical Nutrition. 2020 Feb 1;39(2):475-83.

Randomized, Double-Blind, Controlled Trial

P: 41 T2DM with overweight/obesity

I: 16.5 g/day IM +5g maltodextrin added to 66cL alcohol-free beer

C: 66cL of regular alcohol-free beer


O: Biochemical markers, anthropometry, energy intake and satiety

- IM had significantly reduced appetite
- IM had a trend for lower energy intake specifically SFA
- IM significantly reduced insulin resistance
- IM may be more effective in weight management in T2DM

Isomaltulose & Postprandial Glycemic Management

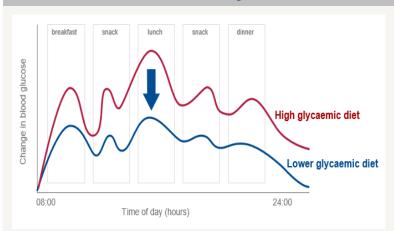
Reference	Country	Study design	Population	Control	PPG	PP INS	GIP	GLP-1
Notbohm et al (2021)	Germany	Randomised DB Cross-Over	21 male recreational endurance runners	Maltodextrin and glucose				
	New							
Kendall et al (2018)	Zealand	DB Cross-Over Study	77 healthy adults	Sucrose				
Kawaguchi et al (2018)	Japan	Randomised SB Cross-Over	5 male patients with NAFLD	Sucrose				
Kobayashi et al (2021)	Japan	Cross-Over	10 healthy middle-aged and older adult	Sucrose				
Keyhani-Nejad et al (2020)	Germany	Randomised DB Cross-Over	15 NGT, 10 IGT and 10 T2DM	Sucrose				
Mateo-Gallego et al (2020)	Spain	10 week RCT (crossover)	41 T2DM with overweight/obesity	Maltodextrin and glucose				
Camps et al (2021)	Singapore	Randomised SB Cross-Over	12 healthy men	Sucrose				
Lamiquiz-Moneo et al (2022)	Spain	Randomised Cross-Over	10 + 20 healthy volunteers	Maltodextrin and glucose				
Sünram-Lea et al (2021)	Switzerland	Randomised Cross-Over	11 healthy children aged 5-7 years	Sucrose and glucose				
Kokubo et al (2022)	Japan	Randomised SB Cross-Over	20 individuals with prediabetes	Std ONS				
de Groot E et al (2020)	Ireland	Randomised DB Cross-Over	80 overweight mildly hypertensive adults	Sucrose	Late PP	period		
Zhang et al (2023)	Germany	Randomised DB	8-15 healthy adults & 9-13 T2DM	Sucrose				
Marcchand et al (2020)	New Zealand	Randomised Cross-Over	65 healthy young adults	Sucrose				
Dávila et al (2019)	Venezuela	Randomised DB Cross-Over	23 T2DM > 50 years old	ONS std				

Predominantly consistent results

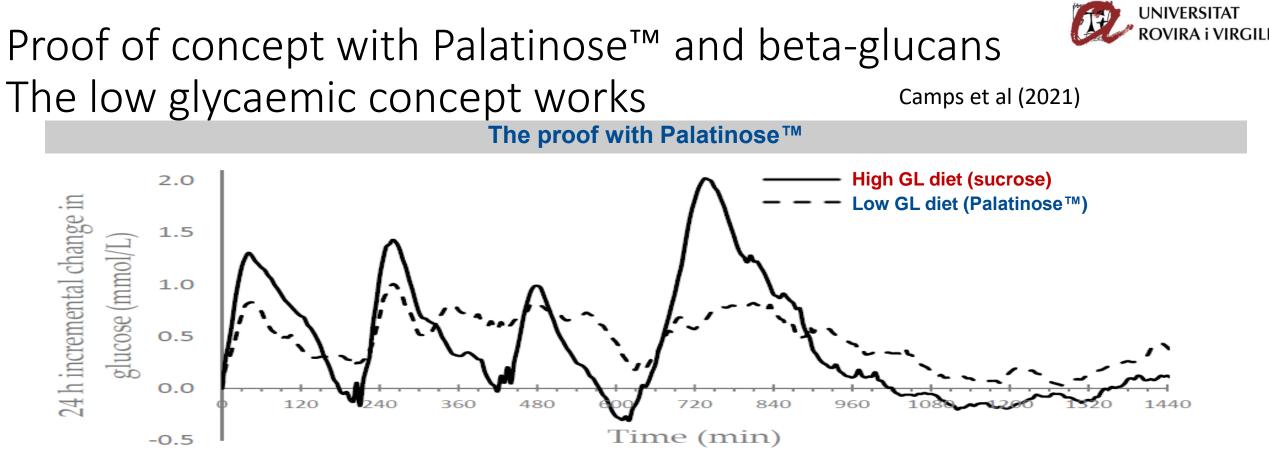
Gastric inhibitory polypeptide (GIP) Glucagon-like peptide -1 (GLP-1)

IM and beta-glucans as part of a low-GI diet

Foods used to construct the test meals provided in the study.


LGL Ingredients		HGL Ingredients		
Breakfast	<i>Yellow noodles (beta-glucan, 4.2%),</i> spinach, minced pork, light and dark soya sauce, oil	Yellow noodles (control), spinach, minced pork, light and dark soya sauce, oil		
Lunch	Parboiled basmati rice, pork balls, sesame seeds, knorr seasoning, chamomile tea, isomaltulose (25 g)	<i>Glutinuous rice,</i> pork balls, sesame seeds, knorr seasoning, chamomile tea, <i>sucrose (25 g)</i>		
Snack	Jelly, chamomile tea, <i>isomaltulose (55 g)</i> , oreo cookies	Jelly, chamomile tea, <i>sucrose (55 g)</i> , oreo cookies		
Dinner	Pad thai glass noodles with tofu, wonton, chamomile tea, isomaltulose (22 g), oil, rice biscuits	Teriyaki chicken with rice, wonton, chamomile tea, sucrose (22 g), oil, potato chips		

Different ingredient indicated in italic font; LGL: reduced GL; HGL: high GL.


Study design: Randomised, single-blind, controlled, cross-over study in 12 healthy men

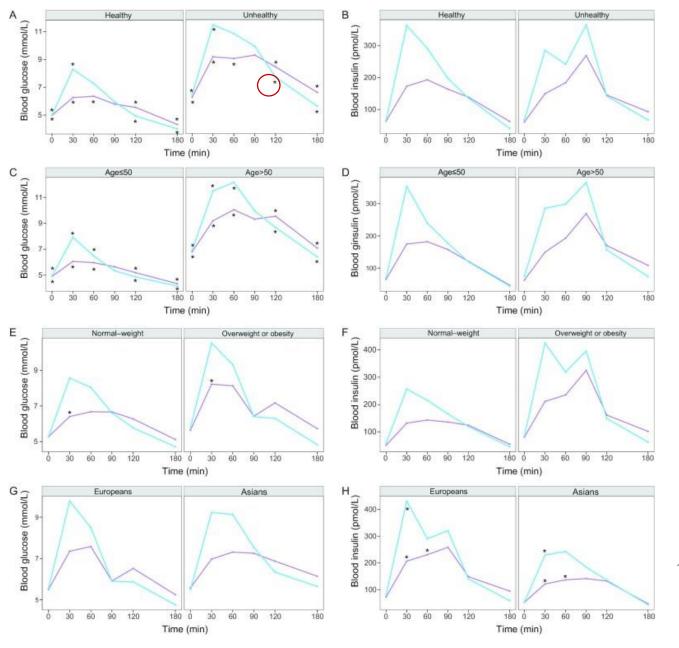
Camps SG, Kaur B, Lim J, Loo YT, Pang E, Ng T, Henry CJ. Nutrients. 2021 Sep 3;13(9):3102.

In theory

- Lower maximum glucose levels over 24 hr (p=0.0024) with the low GL diet, especially after dinner (p=0.0084)
- Balanced blood levels over 24 hr (p<0.0001); fewer swings in blood glucose as measured by MAGE

Curves mimic theoretical low GI blood glucose reponsecurves

Camps SG et al . Nutrients. 2021 Sep 3;13(9):3102.

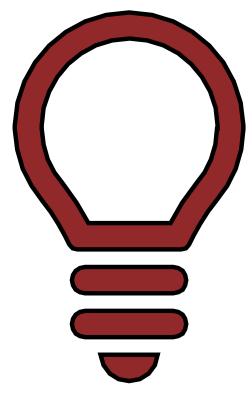


IM and glycemic response-SR & MA (2022)

- 11 RCTs (n = 175 participants), all adults were included.
- Location: 4 countries (Japan, Brazil, Germany, and the Netherlands),
- Population: Healthy, type 2 diabetes, impaired glucose tolerance, and hypertension.

Outcomes	Level of evidence
Oral IM caused an attenuated glycemic response compared with sucrose at 30 min.	Moderate evidence
Oral IM caused an attenuated but more prolonged glycemic response than sucrose and an attenuated insulinemic response.	Low evidence
More benefit of IM for people with type 2 diabetes, impaired glucose tolerance, or hypertension; older people; overweight or obese people; and Asian people.	Low-to-moderate

Xie J et al . Advances in Nutrition. 2022 Oct 2;13(5):1901-13.


Changes in PP glycemia & insulinemia

UNIVERSITAT

- Replacing sucrose with IM is associated with lower and more prolonged glycemic response and an attenuated insulinemic response.
- Patients with T2DM, IGT, or hypertension, older adults, adults with overweight and obesity, and Asians may particularly benefit from the use of IM.
- More RCTs performed using standard mixed meals containing IM to guide its use.

Xie J et al . Advances in Nutrition. 2022 Oct 2;13(5):1901-13.

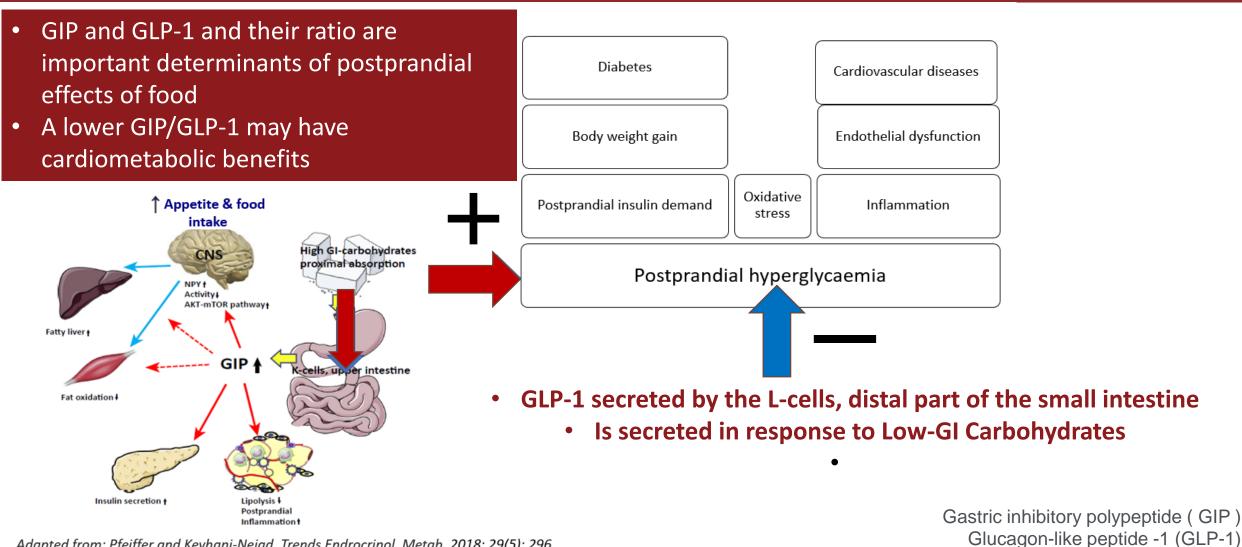
Mechanistic explorations

COMPOSIÇÃO NUTRICIONAL	10	
Densidade Calórica (Kcal/ml)	1,0	asi
Proteínas	19%	and the
Carboidratos	47%	
Lipídeos	34%	
Fonte de Proteínas	Proteína isolada de soja (50%) Proteína do soro do leite (50%)	
Fonte de Carboidratos	Amido de tapioca (27%) Lactose (31%) Isomaltulose (38%) Outros (4%)	brashverte o sog settor i Tecali techs de the
Fonte de Lipídeos	Óleo de canola (54%) Óleo de girassol (43%) Óleo de peixe (3%)	Barr
Fibras	4g/200ml (GOS, dextrina resistente, amido resistente e celulose)	
Solúveis	83%	
Insolúveis	17%	
Relação ω6: ω3	3,7:1	
Relação Kcal não protéica/gN	105:1	
Outras suplementações	Colina e Mix de carotenóides	
Osmolaridade (mOsm/l)	365	
Osmolalidade (mOsm/kg de água)	440	

Dávila et al. Nutrients. 2019 Jun 28;11(7):1477.

Diabetes specific formula with IM improve PPG response through incretins?

Randomised, double-blind, cross-over study


- P: 16 patients with DM2, Brazil
- I: ONS-D with IM
- **C:** standard formula

O:

Gastric inhibitory polypeptide (GIP)

- Lower GI values
- Lower insulin and GIP AUC
- Lower subjective appetite AUC

Understanding incretins

Adapted from: Pfeiffer and Keyhani-Nejad. Trends Endrocrinol. Metab. 2018; 29(5): 296

IM and the incretins

Table 1: Human studies suggesting involvement of incretins in low GI postprandial glycaemic response

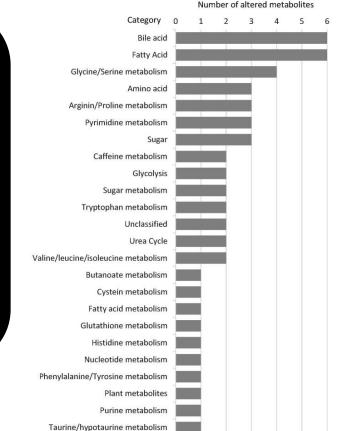
Author (year)	Country	Participants	Control	Low GI Comparator	Findings (low vs high GI)	
Angarita <i>et. al.</i> (2019)	Venezuela	T2DM (n= 16)	Std enteral formula	DSF (with isomaltulose and sucromalt)	 ↓ 3h PP glycaemia ↓ 3h PP INS ↓ 3h PP GIP ↑ 3h GLP-1 	
Keyhani-Najad <i>et. al</i> (2016)	Germany	T2DM (n= 10)	Sucrose solution	Isomaltulose solution	↓ 3h PP glycaemia ↓ 3h PP INS ↓ 3h PP GIP ↑ 3h GLP-1	
Motallib <i>et. al</i> (2016)	USA	T2DM (n=22)	Oatmeal	DSF with isomaltulose and sucromalt (GI difference not discernible)	↓ 4h PP glycaemia = 4h PP INS ↑ 4h GLP-1	
Sakuma <i>et. al</i> (2009)	Japan	IGT (n=2) & T2DM (n=7)	dextrin-based liquid formula	isomaltulose-based liquid formula	↓ 3h PP glycaemia ↓ 3h PP INS	
 Gaps: 1. Effects predominantly relies on presence of low GI sugar (Isomaltulose) and drinks/formula 2. Generalisability to real foods is unknown. 3. GIP has scant data 4. No comparison of effect between healthy and prediabetes possible with existing data 						
Abbreviations PP- postprandial; INS-insulin, GIP- Glucose-dependent Insulinotropic Polypeptide, GLP-1- Glucagon-like peptide-1; DSF: Diabetes Specific Formula						
) () () (1) (2) (2) (2)						

IM and the incretins

Table 1: Human studies suggesting involvement of incretins in low GI postprandial glycaemic response

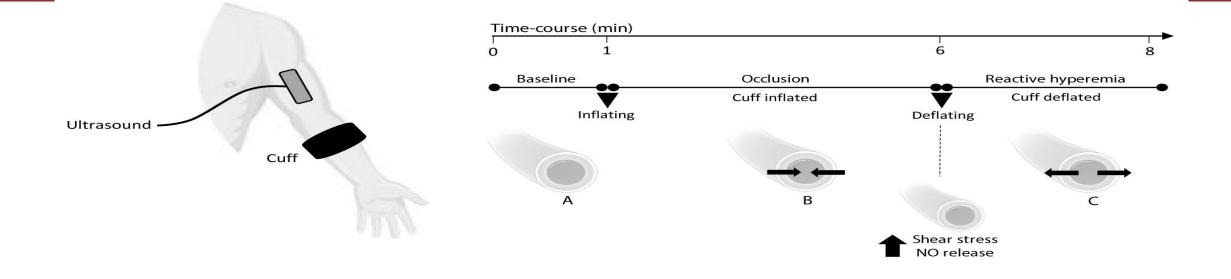
Angarita <i>et. al.</i>	Venezuela	T2DM (n= 16)	Std enteral	DSF (with isomaltulose and	↓ 3h PP glycaemia
Keyhani-Na G <i>et. al</i> (201 T	altern his can	atives have card	iometabolio	o in comparison cadvantages abc	ove and
Motallib <i>et</i> (2016)	eyond t	the manag	ement of p	postprandial glyc	aemia
Motallib <i>et</i> (2016) Sakuma <i>et. al</i> (2009)	Japan	IGT (n=2) & T2DM (n=7)	dextrin-based	DOStprandial glyc discernible) isomaltulose-based liquid formula	aemia ↑ 4h GLP-1 ↓ 3h PP glycaemia ↓ 3h PP INS
(2016) Sakuma <i>et. al</i>	Japan 1. Effects p 2. Generali	IGT (n=2) & T2DM (n=7) redominantly relie sability to real food	dextrin-based liquid formula s on presence of low ds is unknown. 3. GIP	discernible) isomaltulose-based liquid formula GI sugar (Isomaltulose) and d	↑ 4h GLP-1 ↓ 3h PP glycaemia ↓ 3h PP INS rinks/formula

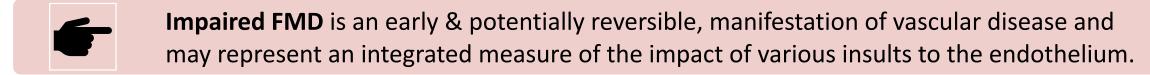
Isomaltulose & Novel Cardiovascular Outcomes


Novel cardiovascular outcomes

Reference	Country	Study design	Population	Control	Outcomes
Kawaguchi et al					
(2018)	Japan	Randomised SB Cross-Over	5 male patients with NAFLD	Sucrose	Bile and fatty acid metabolism
Kobayashi et al			10 healthy middle-aged and		Brachial wave and pulse wave
(2021)	Japan	Cross-Over Study	older adult	Sucrose	velocity
de Groot E et al (80 overweight mildly	Sucrose	
2020)	Ireland	Randomised DB Cross-Over	hypertensive adults		FMD

IM in patients with non-alcoholic fatty liver disease: A metabolomic analysis.


- Male patients with NAFLD (n=5) consumed 20 g IM or sucrose.
- Outcomes evaluated
 - Changes in insulin resistance by alterations of serum C-peptide immunoreactivity (CPR)
 - Metabolomic analysis from baseline to 15 min after the administration


7 Findings

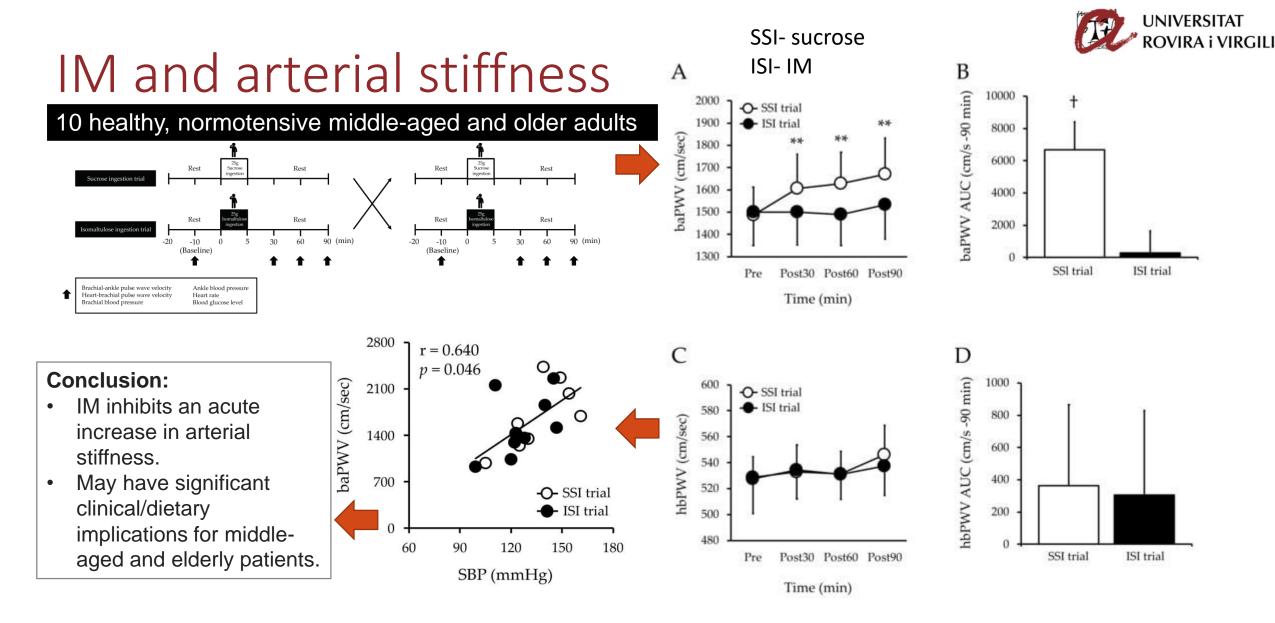
- No significant difference in blood glucose changes.
- IM significantly \downarrow CPR level.
- Significant alterations in 52 metabolites
- IM particularly affects taurodeoxycholic acid (↑ 12.5-fold), and arachidonic acid (↓ 0.01-fold).
- Demonstrated that IM **improved insulin resistance** in NAFLD patients.
- May be modulated through alterations of bile and fatty acid metabolisms.

Understanding Flow Mediated Dilatation (FMD)

FMD measures the release of NO by the endothelium due to a transient flow stimulus.

Yeboah et al . Circulation. 2009 Aug 11;120(6):502-9.

FMD study with Palatinose[™]



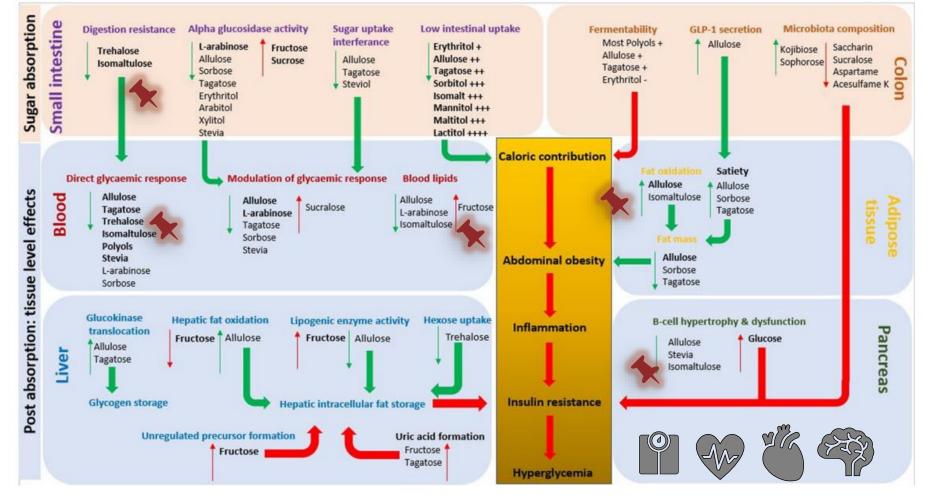
Title: "Efficacy of Isomaltulose Compared to Sucrose in Modulating Endothelial Function in Overweight Adults"

Study aim:To investigate acute effects of IM vs SUC on endothelium-dependent vasodilation in OW.Design:Acute RCT, double-blind, cross-overSubjects:80 ow/ob subjectsDosage:50g IM vs SUCOutcomes:FMD (= EFSA accepted),Glucose, Inuslin

Findings: 'Low-glycemic IM attenuates postprandial decline in endothelial function if compared to sucrose. This was particularly seen in individuals with impaired glucose tolerance. 'Therefore, IM may promote cardiovascular health.'

de Groot et al. Nutrients. 2020 Jan 3;12(1):141.

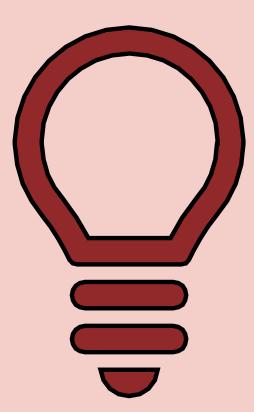
Kobayashi et al . Nutrients. 2021 Dec 15;13(12):4493.


Summary of existing evidence

Timeframe	Healthy	Obese/overweight	T2DM/Pre-DM
Acute	Reduced PPG Improved FMD	Reduced PPG Improved FMD	Reduced PPG
Longer-term	Reduced HOMA-IR	Reduced body weight	Reduced HOMA-IR

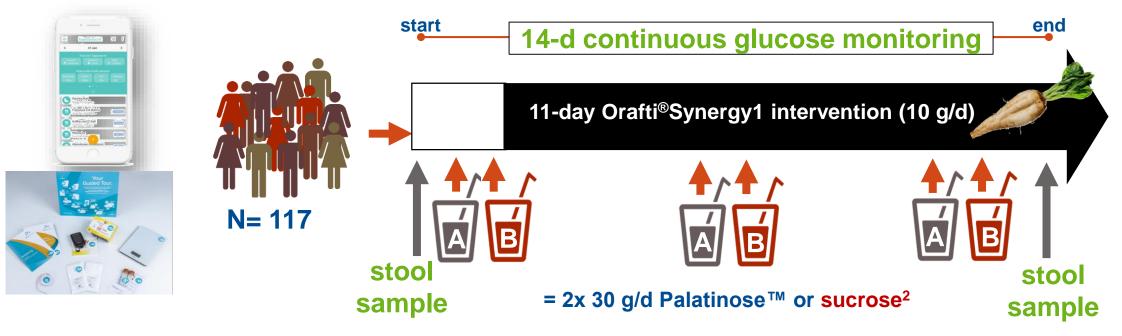
Ahmed et al. Nutrition Reviews. 2022 Feb;80(2):255-70.

Metabolic actions of IM in humans: SR



Van Laar et al. Critical Reviews in Food Science and Nutrition. 2021 Mar 9;61(5):713-41.

Several beneficial effects of IM on metabolism noted


- Slower absorption
- Reduce glycemic response
- Improved fat oxidation
- B cell protection
- Scope for further research

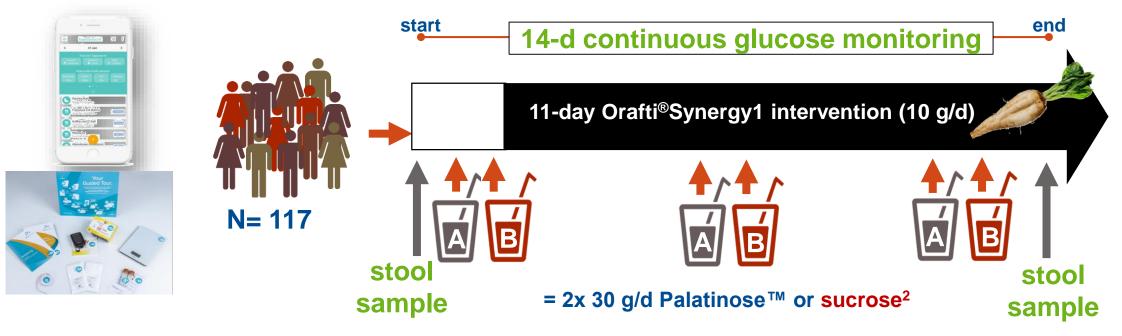
Futuristic Innovations

Citizen science approach with IM and Inulin-What happens in real-life?

'Citizen Science' is "the practice of citizens performing science and of scientists working together with citizens"¹

Outcome measures:

- 14-d continuous glucose response (CGMS)
- Gut microbiota (16S rRNA sequencing)
- Food intake (14-d food diary)


Kordowski et al. Frontiers in Nutrition. 2022;9.

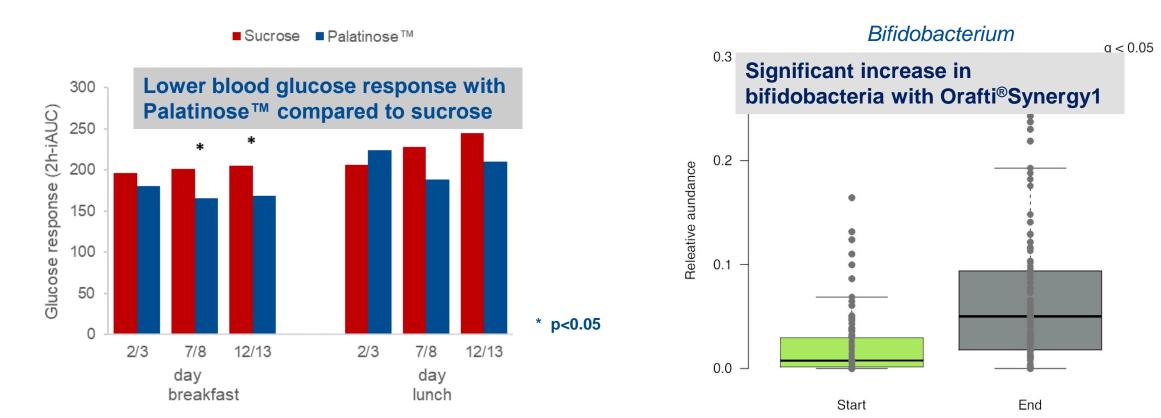
Used Palatinose[™] and Orafti[®]Synergy1

UNIVERSITAT

Citizen science approach with IM and Inulin-What happens in real-life?

'Citizen Science' is "the practice of citizens performing science and of scientists working together with citizens"¹

Outcome measures:


- 14-d continuous glucose response (CGMS)
- Gut microbiota (16S rRNA sequencing)
- Food intake (14-d food diary)

Kordowski et al. Frontiers in Nutrition. 2022;9.

Used Palatinose[™] and Orafti[®]Synergy1

UNIVERSITAT

Citizen science approach with Isomaltulose and Inulin Results from in free-living participants

Kordowski et al. Frontiers in Nutrition. 2022;9.

UNIVERSITAT

Used Palatinose[™] and Orafti[®]Synergy1

Kordowski et al. Frontiers in Nutrition. 2022;9.

Sangeetha Shyam NSM 2023

IM + Inulin: Potential for personalisation?

- Confirmed beneficial effetc of IM (Palatinose) vs sucrose in a real-life
 - Lower postprandial blood glucose response
 - More balanced blood glucose profile throughout the day (less glucose oscillation)
 - Slow release and sustained glucose supply
- The decrease in glycaemic variability improved significantly with 10 g of oligofructose enriched inulin (Orafti[®]Synergy1).→ synergistic effects?
- Inulin significantly increased bifidobacteria. \rightarrow explains synergy

IM + Inulin: Potential for personalisation?

- Though everyone responded with lower PPG in response to IM vs sucrose, 72% were good responders
- Gut microbiota composition determined level of beneficial effect to IM.
- Higher Firmicutes:Bacteroidetes ratio → better effects
- Scope for personalisation using functional food ingredients

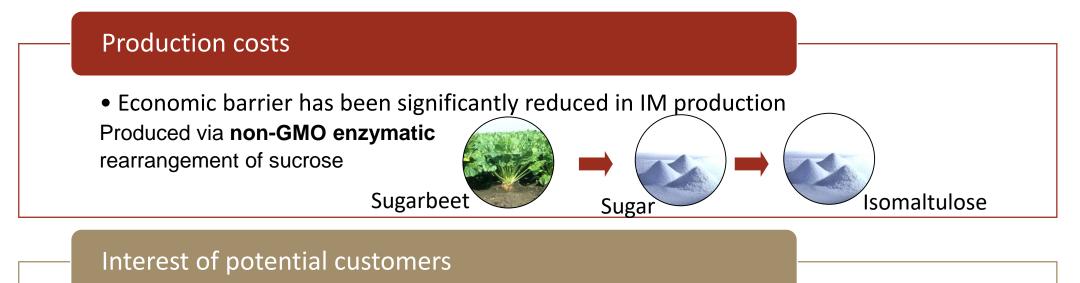
Food applications of Isomaltulose

Sangeetha Shyam NSM 2023

Physiological properties of nutritive sweeteners.

Sugars	Glycemic classification	Energy content(kc al/g)	Relative sweetness tosucrose (100)	Relative glycaemic response (RGR)	Relative insulin response (RIR)	Status	For diabetic patients use
Monosaccharides							
Glucose	High	4	70-80	100	100	Food	No
Fructose	Very low	4	120	19	9	Food	No
D-tagatose	Very low	1.5	92	3	3	Novel	Yes
Disaccharides							
Isomaltulose	Very low	4	40-50	32	27	Novel	Yes
Lactose	Low	4	30-50	46	-	Food	No
Maltose	High	4	40-50	105	-	Food	No
Sucrose	Intermediate	4	100	68	45	Food	No
Trehalose	High	4	45	72	51	Novel	Yes

Sokołowska et al. Critical reviews in food science and nutrition. 2022 Jul 18;62(21):5679-704.


List of patent applications for isomaltulose

Application	Patent Number (publication date)				
	SG11202000810T(A) (2020-02-27); PL1677618(T3) (2011-10-31); PL1858348(T3) (2016-08-31);				
Food	DE102011012205(A1) (2012-08-02); ZA200501009(B) (2006-10-25); DE102008037185(A1) (2009-03-				
Additive/ingredient	12); WO9508926(A1) (1995-04-06); WO2006119991(A1) (2006-11-16)				
	PL2931057(T3) (2020-02-28); NZ581366(A) (2012-06-29); ZA200506219(B) (2006-12-27);				
Quality improvement	US2006096587 (A1) (2006-05-11); US20060096587(A1) (2006-05-11)				
Nutritional					
supplement/Functiona	aUS2010004194(A1) (2010-01-07); PL2592950(T3) (2018-09-28); US2011009358(A1) (2011-01-13);				
l food	EP2272521(A1) (2011-01-12);US2006188627(A1) (2006-08-24)				
Flavor					
modification/enhance	EA200870429(A1) (2009-04-28); US2008175974(A1) (2008-07-24); WO2004008870(A1) (2004-01-29);				
ment	DE102008050591(A1) (2010-04-15)				
In 2006, FDA approved IM (content ≥ 98%) as GRAS (No. 184).					
In 2017, FDA approved dried IM syrup (content \geq 80%) as GRAS (No. 681),					
Approved for use as a sweetener in foods and beverages at the same use levels as sucrose.					
Approved for use as a sweetener in roous and beverages at the same use revers as sucrose.					

Sokołowska et al. Critical reviews in food science and nutrition. 2022 Jul 18;62(21):5679-704. Tian et al. Applied Microbiology and Biotechnology. 2019 Nov;103:8677-87.

Factors facilitating translation of benefits

• Most similar taste achievable in three food matrices (black tea, chocolate milk, and natural yogurt) among 8 sweeteners tested

Sokołowska et al. Critical reviews in food science and nutrition. 2022 Jul 18;62(21):5679-704.

Tan et al . Journal of Food Science. 2020 Feb;85(2):486-92.

Food applications of IM

Isomaltulose containing foods in Malaysia

- ✓ Child growing-up formula
- ✓ Oral nutritional supplements
- ✓ Muscle-building supplements
- ✓ Health supplements
- ✓ Sports supplements

Tian Y, Deng Y, Zhang W, Mu W. Applied Microbiology and Biotechnology. 2019 Nov;103:8677-87. Sangeetha Shyam NSM 2023

INTRA CARB

Development and Sensory Evaluation of Egg Custard Pudding Using Isomaltulose

Chang CY¹, Tan SS¹, Shyam S¹, Chong MHZ¹ ¹Division of Nutrition and Dietetics. School of Health Sciences. International Medical University

INTRODUCTION

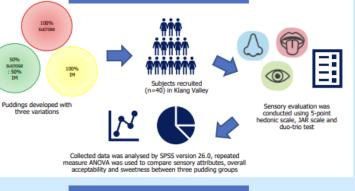
- High consumption of sugar → extra calories → positive energy balance and weight gain → obesity, a risk factor of diabetes mellitus [1].
- High demand for sugar intake in Malaysia raise concern on substitution of sugar.
- Isomaltulose (IM):
- Potential substitute to sucrose, has low glycaemic index (32) and non-cariogenic properties [2].
- Has stable a-1,6 glycosidic linkage between glucose and fructose [2].
- Has similar taste, but half sweetening power to • sucrose and without aftertaste [2, 3].

- Substitution of sugar may cause difference in sweetness, appearance, aroma, taste and texture [4].
- Sensory properties are crucial factors for consumer's acceptability towards a product [5].
- Sensory evaluation is important to measure the consumer perception of senses towards the quality of products [6].
- Limited evidence on sensory attributes and acceptability of IM in chilled desserts.
- Egg custard pudding with high content of sugar and simple ingredients was chosen to be the test product.

OBJECTIVE

To determine the sensory attributes and overall acceptability of egg custard pudding made with isomaltulose.

SUBJECTS


Inclusion Criteria:

- Chinese Malaysian adults
- Aged 18 to 50 years

Exclusion Criteria:

- Heavy smokers (≥25 cigarettes daily)
- Heavy alcohol consumers (≥8 drinks a week)
- Pregnant and lactating women
- Adulte with long-term modication

METHODOLOGY

RESULTS

 A total of 40 subjects in which 23 males and 17 females completed the study. Mean age of subjects: 23.2±5.5 years.

(right) made from three variations of sugars.

Dudding

100% suc

100% IM

100% suc

50% suc: 50% IM

50% suc: 50% IM

50% suc: 50% IM

50% sur: 50% IM

50% suc: 50% IM

3,95±0,75*

3,45±0,88

3.53±0.85

4.03±0.86

3.68±0.97

3.73±0.99

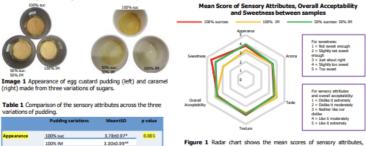
3,85+0.92

3.85±0.86

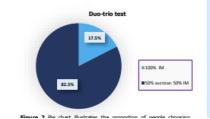
3,75±0.87

4.45±0.78*1

3.43±0.98 0.768


3.65±1.05 0.136

3.95±0.88 0.502


3.65±0.95 0.549

<0.001

variations of pudding.

overall acceptability and sweetness between the three samples.

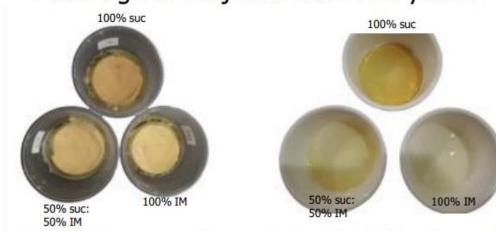
DISCUSSION

- · 100% IM pudding had the lowest rating in appearance: IM has lower melting point and higher stability of glycosidic bond, exhibits less caramelisation [7].
- · No significant difference in aroma and taste, coherent with the study on marshmallow [8].
- Aroma of egg custard pudding may be developed from caramelisation of sugar or from the milk, thus a more comprehensive descriptive test needs to be undertaken to determine the specific contributors.
- · Most of the subjects preferred the taste of 100% IM pudding: IM exhibited less sweetness that possibly influence the overall taste of the pudding.
- · Texture was not significantly different between groups, similar to cookies substituted with xylitol [9].
- Mushy texture was found in 100% IM pudding: IM has low hyproscopic feature with reduced water-holding capacity to retain moisture [2].
- Overall acceptability: Half and full IM replacement in pudding were better accepted than the 100% sucrose pudding, similar results found in studies on marshmallow [8] and lemon marmalade [10].
- Sweetness: 100% IM pudding obtained a mean score nearest to just about right, may due to lower sweetness preference in Chinese population [11].
- · In duo-trio test, pudding samples made with sucrose and IM were perceptibly different: Possibly linked to the significant differences in terms of appearance and sweetness obtained in this study.

CONCLUSION

- Positive results in aroma, taste, texture and overall acceptability between three variations of egg custard puddings.
- · Egg custard pudding made with 100% IM was the most accepted by the subjects, with highest score obtained in taste, while sweetness was nearest to just about right.

REFERENCES


 Khawaja AH, Qassim S, Hassan NA, Arafa EA. Added sugar: Nutritional knowledge and consumption pattern of a principal driver of obesity and diabetes among undergraduates in UAE. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 2019 July-August 2019;13(4):2579-2584.Sentiko A. Innovative low-glycaemic carbohydrates: an update. Nutrafoods. 2013 Dec 1;12(4):127-35.

- Sentko A. Innovative low-glycaemic carbohydrates: an update. Nutrafoods. 2013 Dec 1;12(4):127-35.
 Holub I, Gostner A, Theis S, Nosek L, Kudlich T, Melcher R, Scheppach W. Novel findings on
- the metabolic effects of the low glycaemic carbohydrate isomaltulose (Palatinose"). British journal of nutrition. 2010 Jun;103(12):1730-7.
- 4. Sugar Nutrition Resource. The importance and function of sugar in our food. 2020. 5. Stone H. Sidel JL. Sensory Evaluation Practices. Jordan Hill: Elsevier Science & Technology: 2004
- 6. Lawless HT, Heymann H. Sensory evaluation of food: principles and practices. Springer Science & Business Media; 2010 Sep 27.
- 7. Mu W, Li W, Wang X, Zhang T, Jiang B. Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Appl Microbiol Biotechnol 2014 Aug 2014;98(15):6569-82. 8. Periche A, Heredia A, Escriche I, Andrés A, Castelló M. Potential use of isomaltulose to produce healthie
- marshmallows. LWT-Food Science and Technology 2015;62(1):605-612. 9. Winkelhausen E, Jovanovic-Malinovska R, Veliclova E, Kuzmanova S. Sensory and microbiological quality of a baked
- product containing xylitol as an alternative sweetener. Int J Food Prop 2007;10(3):03-649. 10.Rubio-Arraez S, Ferrer C, Capella JV, Ortolá MD, Castelló ML. Development of lemon marmalade formulated with new sweeteners (isomaltulose and tagatose): Effect on antioxidant, rheological and optical properties J Food Process Eng 2017;40(2):e12371.
- 11.Jaafar N, Abdul Razak I. Ethnic variations of sweet preferences in Malaysian children: a pilot study. J Pedod 1990 Spring:14(3):147-149.

A total of 40 subjects in which 23 males and 17 females completed the study.
Mean age of subjects: 23.2±5.5 years.

Image 1 Appearance of egg custard pudding (left) and caramel (right) made from three variations of sugars.

Table 1 Comparison of the sensory attributes across the three variations of pudding.

	Pudding variations	Mean±SD	p value	
Appearance	100% suc	3.78±0.97*	0.001	
	100% IM	3.30±0.99*#		
	50% suc: 50% IM	3.95±0.75#		

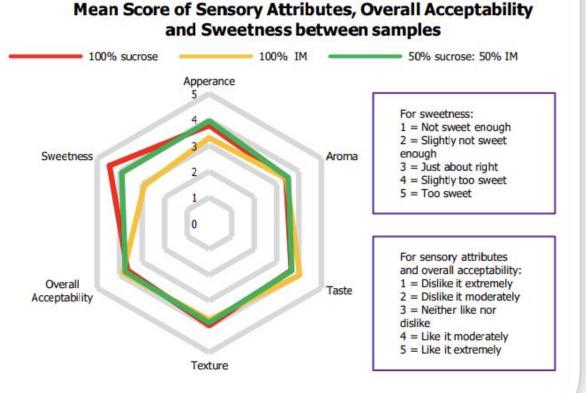


Figure 1 Radar chart shows the mean scores of sensory attributes, overall acceptability and sweetness between the three samples.

Take Home Messages

- IM is a promising alternative for body weight and glycaemic management
- Mechanistic evidence for it effects is accruing
- IM provides potential for food innovation
- Long term trials and research into personalisation may be useful

Acknowledgement

Prof. Jordi Salas-Salvadó, MD, PhD

Distinguished Professor of Nutrition and ICREA-Acadèmia Researcher at Universitat Rovira i Virgili.

References available on request <u>sangeeshyam@gmail.com</u>

Sangeetha Shyam

Come visit us!

Grup Consolidat de Recerca per la Generalitat de Catalunya. Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM) - 2021 SGR 00336 <u>https://www.nutricio.urv.cat</u>

