••••

Addressing nutritional needs of sarcopenia in older adults

Hanis Mastura Yahya Nutritional Science Programme, Centre of Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia hanis.yahya@ukm.edu.my

Table of contents

Introduction

0

Risk factors of sarcopenia

What is sarcopenia?

Dietary & exercise intervention

+

03 Prevalence of sarcopenia

Introduction

- Malaysia will be an aging nation by 2030 with 15 % of older adults in the population: Impact government allocated resources on health, pension, and social programs.
- Ageing is associated with many adverse health outcomes including the decline in muscle mass and strength known as sarcopenia.
- The rate of decline in muscle mass & physical function are varied: modifiable behavior factors such as diet can influence the development of sarcopenia (Bloom et al. 2018).

Introduction

0

- Improving diet & nutrition may be effective for both the prevention and treatment of sarcopenia, thus promoting health in later life (Robinson et al. 2012).
- Identification of individuals at risk of malnutrition to provide early intervention: an important public health strategy for preventing the development of sarcopenia and related complications, such as frailty (Morley 2008).

What is sarcopenia?

Definition

+

Age-related loss of skeletal muscle, muscle strength, or/and reduced physical performance Growing public health problems in healthy community-dwelling older adults in Asia (Wang et al. 2017; Yoshimura et al. 2017)

Process

Progressive muscle disease that is described as a combination of low muscle quality and physical performance.

Outcomes

It is associated with chronic diseases, disability, risk of falls, poor quality of life, independency and mortality.

Prevalence of sarcopenia

Malaysia Global Malaysia At the community: 10 to 27% for those > 60Prevalence of sarcopenia was 60-70 years: 5 to 13 % 33.6% of community-dwelling **Vears** (Petermann-Rocha et al. 80 years and older: 11 to 50 % older adults (Ranee et al. 2022) 2022) (Rosli et al. 2017) *,*@, €__₽ Ŵ ඳි Asia Malaysia 4.15% and 11.5% in the Among older adults with T2D: general communities 28.5% (Sazlina et al. 2020) (Shafiee et al. 2017) Long-term care homes: 47 % (Yap et al. 2020)

+

Risk factors of sarcopenia

- A low-quality diet is one of the major contributing factors to sarcopenia and muscle weakness (Beaudart et al. 2019).
- Higher body mass index was associated with an increased risk of sarcopenia (Liu et al. 2022).
- Smoking was associated with an increased risk of sarcopenia in a metaanalysis of 29 studies (Gao et al. 2021).
- Association between malnutrition and sarcopenia; early identification of older adults with associated risk factors (Chen et al. 2022).

Malnutrition & sarcopenia

Country	Methodology	Findings
Malaysia (Norazman et al. 2020)	Cross-sectional study, Community-dwelling, ≥ 60 years old	• Mid-upper arm circumference, calf circumference (CC), and skeletal muscle mass index were all significantly associated with malnutrition risk; related to frailty & sarcopenia
Indonesia (Arjuna et al. 2017)	Cross-sectional study, Community-dwelling, ≥ 65 years old	 A significant correlation between malnutrition risk and muscle function in terms of HGS and gait speed
Taiwan (Chang 2017)	Cross-sectional study, Community-dwelling, ≥ 65 years old	• Older adults at risk of malnutrition have poorer muscle strength, had less energy, and more often had sarcopenia and measures of frailty

Outcomes measures

+

Muscle mass

Anthropometry, Dual-energy X-ray absorptiometry (DXA), Bioimpedance analysis (BIA), Computed tomography (CT), Magnetic resonance imaging (MRI)

Physical performance

Short Physical Performance Battery (SPPB), Gait/walking speed, Timed get-up-and-go test, Balance Stair climb power test

+

Muscle strength

Handgrip strength (HGS) Quadriceps strength Muscle quality index

Sarcopenia

Combined outcomes of muscle mass, muscle strength or physical performance

Bloom et al. (2018)

Nutrient intake & sarcopenia

Country	Methodology	Findings
Malaysia (Ranee et al. 2022)	Cross-sectional study, Community-dwelling,≥60 years old	• Lower net intake of energy, carbohydrate, protein, fat and sodium in subjects with sarcopenia
Singapore (Chew et al. 2022)	Cross-sectional study, Community-dwelling,≥65 years old	 Subjects with sarcopenia had lower dietary protein intake
Iran (Bagheri et al. 2021)	Cross-sectional study, Community-dwelling,≥55 years old	• Adherence to carbohydrate-vitamin dietary pattern associated with lower low gait speed

Nutrient intake & sarcopenia

Country	Methodology	Findings
Belgium (Beaudart et al. 2019)	Cross-sectional study, Community-dwelling, ≥ 65 years old	 Sarcopenic subjects had a lower intake of lipid, iron, magnesium, and potassium, protein
Netherlands (ter Borg et al. 2016)	Cross-sectional study, Community-dwelling, ≥ 65 years old	• Subjects with sarcopenia had 10–18% lower intake of n-3 fatty acids, vitamin B6, vitamin E, and magnesium compared with non-sarcopenic subjects

Protein

Adequate energy and protein intake are important elements of nutritional therapy for sarcopenia

- Intervention: varying doses of enriched milk protein, whey protein, leucine, cooked lean meat
- Duration: 12 weeks to 12 months
- Some combined with exercise
- In frail elderly individuals it may be that a combination of exercise with additional protein intake may help to minimize the loss of lean mass and diminished strength that occurs with aging

+

Review by Ganapahthy & Nieves (2020)

Omega-3 fatty acids

- The most studied include EPA & DHA, proposed of having anti-inflammatory effects
 - Intervention: varying amount of omega-3 supplementation, fish oil (EPA & DHA)

+

- Duration: 8 weeks to 6 months
- Some combined with strength training
- Increase muscle volume, hand grip strength

Review by Ganapahthy & Nieves (2020)

Vitamin D

- The deficit of vitamin D has been associated with reduced muscle mass and strength in prospective studies
 - Intervention: vitamin D supplementation
 - Duration: 6 weeks to 9 months
 - It is unclear whether the dose, frequency of dose, or length of treatment impacts the efficacy of vitamin D on improving muscle mass or function

Review by Ganapahthy & Nieves (2020)

Combination of nutrients

Studies on the impact of supplementation with a combination of several nutrients with regard to muscle strength or mass or physical performance

- Intervention: whey protein, vitamin D, leucine, MCT, calcium, EAA, tea fortified with catechins
- Duration: 6 weeks to 3 months
- Significant improvement in muscle mass, hand grip, and walking speed compared to the control/ placebo group

Review by Ganapahthy & Nieves (2020)

Long lasting impact depends on baseline nutritional status, baseline severity of sarcopenia, and long-lasting adherence to the intervention regime (Woo 2017)

Diet & exercise intervention

- Sedentary behavior or absence of exercise are the key elements for the progression of sarcopenia/atrophy of the aging muscle tissue (Gianoudis et al. 2015).
- Resistance exercise is a necessary stimulus to induce increases in skeletal muscle mass (Tieland et al. 2019).
- Combination of nutritional interventions and physical exercise can synergically improve muscle health; may be the most effective strategy for the management of sarcopenia (Damanti et al. 2019).

Diet & exercise intervention

Country	Methodology	Findings
South Korea (Kim et al. 2023)	Older adults aged ≥ 65 years old, 12- week combined intervention consisted of back extensor strengthening exercises and protein supplementation	 No changes in muscle mass & handgrip strength SPPB & back performance scale sum score increase & improved
Brazil (Roschel et al. 2021)	Older adults aged with mean age of 72 ± 6 years), twice-a-week, resistance training program, receiving either protein (whey and soy), leucine, or creatine supplementation	 Leucine supplementation was ineffective to improve muscle mass and function Whey and soy failed to enhance resistance-training effects. Resistance exercise per se increased muscle mass and function in all sub- investigations.

Practical recommendations

Protein intake

Total daily protein intake of 1.6–1.8 g/kg/d

3 main meals

Containing 0.6 g/kg of highquality protein sources

Energy intake

Ensure adequate energy supply to avoid negative energy balance

0

Resistance exercise at least twice a week, increase number of steps

Antioxidant rich diet

Diet with high intake of fruits, vegetables & whole grains

Active lifestyle

Reduce sedentary time

Rondanelli et al. 2015; Rogeri et al. 2022

Conclusion

- Improving dietary intake & physical activity level of older adults
- Importance of screening of older adults at risk of sarcopenia: malnutrition, food intake
- Combination of dietary intervention & resistance exercise as firstline intervention & prevention of sarcopenia

References

- Arjuna T, Soenen S, Hasnawati RA, Lange K, Chapman I, Luscombe-Marsh ND. Nutrients 2017;9: 1240
- Bagheri A, Hashemi R, Heshmat R, Motlagh AD, Esmaillzadeh A. Front Nutr. 2021 Apr 27;8:645072.
- Beaudart C, Locquet M, Touvier M, Reginster JY, Bruyère O. Aging Clin Exp Res. 2019 Jun;31(6):815-824.
- Bloom I, Shand C, Cooper C, Robinson S, Baird J. Nutrients. (2018) 10:308. doi: 10.3390/nu10030308
- Chang SF. J Nurs Scholarsh 2017; 49: 63–72.
- Chen LK, Arai H, Assantachai P, Akishita M, Chew STH, Dumlao LC, Duque G, Woo J. J Cachexia Sarcopenia Muscle. 2022 Jun;13(3):1653-1672.
- Chew STH, Tey SL, Yalawar M, Liu Z, Baggs G, How CH, Cheong M, Chow WL, Low YL, Huynh DTT, Tan NC. BMC Geriatr. 2022 Dec 24;22(1):997.
- Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Nutrients. 2019 Aug 23;11(9):1991.
- Ganapathy A, Nieves JW. Nutrients. 2020 Jun 11;12(6):1755.
- Gao Q, Hu K, Yan C, Zhao B, Mei F, Chen F, et al. Nutrients 2021;13.
- Gedmantaite A, Celis-Morales CA, Ho F, Pell JP, Ratkevicius A, Gray SR. Mech Ageing Dev. (2020) 189:111269. doi: 10.1016/j.mad.2020.11126
- Gianoudis, J.; Bailey, C.A.; Daly, R.M. Osteoporos. Int. 2015, 26, 571–579
- Kim, S., Park, J., Kim, D.H. et al. BMC Geriatr 23, 346 (2023).
- Liu C, Wong PY, Chung YL, Chow SK, Cheung WH, Law SW, et al. Obes Rev 2022;24(2):e13534.
- Morley JE. J Nutr Health Aging 2008;12: 452–456
- Norazman CW, Adznam SN, Jamaluddin R. Nutrients 2020;12:1713
- Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, et al. J Cachexia Sarcopenia Muscle. 2022;13(1):86-9
- Ranee, R, Shahar, S, You, YX, Singh, DKA, Mohamed Sakian, NA. 2022. Mal J Med Health Sci 18(1): 177-186, Jan 2022
- Robinson, S.; Cooper, C.; Aihie Sayer, A. J. Aging Res. 2012, 2012.
- Rogeri PS, Zanella R Jr, Martins GL, Garcia MDA, Leite G, Lugaresi R, Gasparini SO, Sperandio GA, Ferreira LHB, Souza-Junior TP, Lancha AH Jr. Nutrients. 2021 Dec 23;14(1):52.
- Rondanelli M, Faliva M, Monteferrario F, Peroni G, Repaci E, Allieri F, Perna S. Biomed Res Int. 2015;2015:524948.
- Roschel, H.; Hayashi, A.P.; Fernandes, A.L.; Jambassi-Filho, J.C.; Hevia-Larraín, V.; de Capitani, M.; Santana, D.A.; Gonçalves, L.S.; de Sá-Pinto, A.L.; Lima, F.R.; et al. Clin. Nutr. 2021, 40, 4849–4858.
- Rosli H, Shahar S, Badrasawi M, Singh D, Mohamed SN. Jurnal Sains Kesihatan Malaysia. 2017;15(02):103-108
- Sazlina S-G, Lee PY, Chan YM, A. Hamid MS, Tan NC. 2020. PLoS ONE 15(5): e0233299. https://doi.org/10.1371/journal. pone.0233299
- Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. J Diabetes Metab Disord. 2017;16:21.
- ter Borg S, de Groot LC, Mijnarends DM, de Vries JH, Verlaan S, Meijboom S, et al. J Am Med Dir Assoc. (2016) 17:393–401. doi: 10.1016/j.jamda.2015.12.015
- Tieland, M.; Franssen, R.; Dullemeijer, C.; van Dronkelaar, C.; Kyung Kim, H.; Ispoglou, T.; Zhu, K.; Prince, R.L.; van Loon, L.J.C.; de Groot, L.C.P.G.M.; et al. Am. J. Clin. Nutr. 2019, 317, E473–E482
- Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q, et al. Sci Rep 2016;6:38937.
- Woo J. Curr Opin Clin Nutr Metab Care. 2018 Jan;21(1):19-23.
- Yap SF, Boo NY, Pramod DS, Thaw Z, Liew SF, Woo LF, Choo PY, Nadia MH. Malays J Med Sci. 2020;27(2):120–128.
- Yoshimura N, Muraki S, Oka H, Iidaka T, Kodama R, Kawaguchi H, et al. Osteoporos Int 2017;28: 189–199.

• • • •

+

Thank you

Do you have any questions?

0

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

+